Aggregate Production Planning for Cost Optimization: A Case Study of Van’z Collection, a Small-Scale Garment Manufacturer
Society Volume 13 Issue 1#2025
PDF (English)

Keywords

Aggregate Planning Exponential Smoothing Forecasting Moving Average Production Planning

How to Cite

Afifah, Z. N., & Tejaningrum, A. (2025). Aggregate Production Planning for Cost Optimization: A Case Study of Van’z Collection, a Small-Scale Garment Manufacturer. Society, 13(1), 631-650. https://doi.org/10.33019/society.v13i1.877

Share

Views
  • Abstract 67
  • PDF (English) 44
Statistics reflect real-time downloads and views.

Abstract

This study aims to evaluate the aggregate production planning system and explore alternative aggregate strategies to improve cost efficiency in the production planning process. The primary objective of aggregate planning is to mitigate unpredictable fluctuations, such as those caused by seasonal or external factors, and to minimize total planning costs. The research focuses on small and medium-sized enterprises (SMEs) operating in the garment manufacturing sector in Bandung, West Java. The methodological approach includes a case study design, data analysis, and demand forecasting using QM for Windows with forecasting techniques such as Moving Average and Exponential Smoothing. Microsoft Excel is utilized to simulate and analyze various aggregate planning strategies. This study examines three key strategies: subcontracting, labor adjustment, and working hour regulation. Each strategy incurs distinct cost components, subcontracting costs, recruitment and termination costs, and overtime costs, respectively. Field analysis reveals that subcontracting is the most cost-effective strategy. Its advantages include the ability to engage other SMEs in meeting demand, low risk of delivery delays, and reduced exposure to raw material shortages and processing time constraints. However, it carries a risk of quality variation. Therefore, it is recommended that firms implementing a subcontracting strategy maintain strict quality control to ensure compliance with product specifications.

PDF (English)

References

Abdi, H., & Nozari, H. (2023). Genetic algorithm to solve the fuzzy multi-product production planning model. Applied Innovations in Industrial Management, 3(1), 1–12.

Adenekan, O. A., Solomon, N. O., Simpa, P., & Obasi, S. C. (2024). Enhancing manufacturing productivity: A review of AI-Driven supply chain management optimization and ERP systems integration. International Journal of Management & Entrepreneurship Research, 6(5), 1607–1624. https://doi.org/10.51594/ijmer.v6i5.1126

Ahaggach, H., Abrouk, L., & Lebon, E. (2024). Systematic Mapping Study of Sales Forecasting: Methods, Trends, and Future Directions. Forecasting, 6(3), 502–532. https://doi.org/10.3390/forecast6030028

Alburshaid, E. A., & Al-Alawi, A. I. (2024). Forecasting Methods for the Real Estate Market: A Review. 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), 472–477. https://doi.org/10.1109/ICETSIS61505.2024.10459597

Arfiana, A. N., Djatna, T., & Machfud, M. (2021). Model Perencanaan Agregat Untuk Sistem Produksi Dua Tahap Pada Industri Pangan Dengan Bahan Perishable. Jurnal Teknologi Industri Pertanian, 31(1), 34–45. https://doi.org/10.24961/j.tek.ind.pert.2021.31.1.34

Balqis, R. (2024). The effect of overtime working hours on stress levels and work fatigue and its impact on employee performance at PT. Trakindo Utama Tanjung. In International Seminar Conference of Economics and Business Excellence (Vol. 1, pp. 120–126).

Barus, M. D. ., Mustafa, & Thahirah, F. S. (2022). Sistem Forecasting Perencanaan Produksi dengan Metode Single Eksponensial Smoothing pada PT. Food Beverages Indonesisa. In Jurnal Ilmu Pengetahuan Sosial (Vol. 9, Issue 2, pp. 909–920).

Bingol, B. N., Arditi, D., & Polat, G. (2024). A Performance-Based Subcontractor Selection Model. Journal of Construction Engineering and Management, 150(8), 4024079. https://doi.org/10.1061/JCEMD4.COENG-14216

Cadavid, J. P. U., Lamouri, S., Grabot, B., Pellerin, R., & Fortin, A. (2020). Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing, 31(6), 1531–1558. https://doi.org/10.1007/s10845-019-01531-7

Cheraghalikhani, A., Khoshalhan, F., & Mokhtari, H. (2019). Aggregate production planning: A literature review and future research directions. International Journal of Industrial Engineering Computations, 10(2), 309–330. https://doi.org/10.5267/j.ijiec.2018.6.002

Ekström, E., & Tolonen-Weckström, T. (2025). Hiring and firing – a signaling game. Journal of Applied Probability, 62(2), 697–711. https://doi.org/10.1017/jpr.2024.93

Elyasi, M., Altan, B., Ekici, A., Özener, O. Ö., Yanıkoğlu, İ., & Dolgui, A. (2024). Production planning with flexible manufacturing systems under demand uncertainty. International Journal of Production Research, 62(1–2), 157–170. https://doi.org/10.1080/00207543.2023.2288722

Fitriyani, L. Y. (2022). Cost of Goods Manufacturing Implementation With Job Order Costing Method At Pt. Citra Sarung Tangan Indonesia. Journal of International Conference Proceedings, 5(5). https://doi.org/10.32535/jicp.v5i5.2025

Gozali, I., Pujawan, I. N., & Arvitrida, N. I. (2021). Aggregate production planning model under demand uncertainty: A case study in an Indonesian cement company. IOP Conference Series: Materials Science and Engineering, 1072(1), 012033. https://doi.org/10.1088/1757-899X/1072/1/012033

Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., & Callot, L. (2020). Criteria for classifying forecasting methods. International Journal of Forecasting, 36(1), 167–177. https://doi.org/10.1016/j.ijforecast.2019.05.008

Kıyık Kıcır, G. (2024). The New Silence Trend for Businesses: Quiet Hiring. İşletme Bilimi Dergisi, 12(3), 389–399. https://doi.org/10.22139/jobs.1523008

Mahmoudi, A., & Javed, S. A. (2022). Performance Evaluation of Construction Sub‐contractors using Ordinal Priority Approach. Evaluation and Program Planning, 91, 102022. https://doi.org/10.1016/j.evalprogplan.2021.102022

Mula, J., Poler, R., García-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271–285. https://doi.org/10.1016/j.ijpe.2005.09.001

Mutia, Iskandar, I., & Tanjung, S. M. (2024). Double Moving Average and Double Exponential Smoothing Method in Sales Forecasting. Journal of Computers and Digital Business, 3(3), 112–120. https://doi.org/10.56427/jcbd.v3i3.599

Nazabadi, M. R., Najafi, S. E., & Rasinojehdehi, R. (2024). Integrated decision-making in production,‎‎ maintenance, repair, and quality planning using‎ an agent-based simulation. Risk Assessment and Management Decisions, 1(1), 12–21.

Okta, I. F., & Perdana, M. A. (2024). The Effect of Overtime and Workload towards Employee Productivity With Burnout as Mediating Variable. Jurnal Manajemen Dan Ekonomi Kreatif, 2(3), 282–296. https://doi.org/10.59024/jumek.v2i3.398

Qasim, M., Wong, K. Y., & Komarudin. (2024). A review on aggregate production planning under uncertainty: Insights from a fuzzy programming perspective. Engineering Applications of Artificial Intelligence, 128, 107436. https://doi.org/10.1016/j.engappai.2023.107436

Rasmi, S. A. B., & Türkay, M. (2021). Introduction to Aggregate Planning and Strategies. In Aggregate Planning (pp. 1–15). Springer. https://doi.org/10.1007/978-3-030-58118-3_1

Ridwah, H. H., Luthfianto, S., & Roswandi, I. (2024). Production planning and control at PT. ABC using the aggregate planning method. Prosiding Seminar Nasional Teknik Industri Pancasakti Tegal (SNaTIPs), 6, 158–163.

Santoso, A. A., Surorejo, S., Kurniawan, R. D., & Gunawan, G. (2024). Performance evaluation of single moving average and exponential smoothing in shallot production prediction. Jurnal Mantik, 8(1), 714–723. https://doi.org/10.35335/mantik.v8i1.5205

Sari, T. E., & Winarno, W. (2023). Pemilihan Metode Peramalan yang Tepat Untuk Meramalkan Permintaan Piston Cup Forging di Perusahaan Spare-part Kendaraan. Jurnal Serambi Engineering, 8(2). https://doi.org/10.32672/jse.v8i2.5916

Su, X., Zeng, L., Shao, B., & Lin, B. (2025). Data-driven optimization for production planning with multiple demand features. Kybernetes, 54(1), 110–133. https://doi.org/10.1108/K-04-2023-0690

Suryawan, I. G. T., Pratiwi, N. L. S., Sudipa, I. G. I., & Anandita, I. B. G. (2024). Performance of Moving Average and Exponential Smoothing Methods in Forecasting Demand for Blood Components. ISAR Journal of Science and Technology, 2(11), 7–17.

Tajik, M., Hajimolana, S. M., & Daneshvar Kakhki, M. (2024). Production Planning Optimization in a Two-Echelon Multi-Product Supply Chain with Discrete Delivery and Storage at Manufacturer’s Warehouse. Mathematics, 12(13), 1986. https://doi.org/10.3390/math12131986

Wang, R., & Tan, J. (2021). Exploring the coupling and forecasting of financial development, technological innovation, and economic growth. Technological Forecasting and Social Change, 163, 120466. https://doi.org/10.1016/j.techfore.2020.120466

Widiarto, W., & Kurniawan, D. (2024). Comparison Of Single Moving Average And Winter Exponential Smoothing Methods In Predicting The Number Of Divorce Cases At The Religious Court Of Cibinong. Eduvest - Journal of Universal Studies, 4(4), 1952–1961. https://doi.org/10.59188/eduvest.v4i4.1178

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Zahra Nur Afifah, Ayi Tejaningrum

Downloads

Download data is not yet available.